![]() ![]() ![]() For the right-hand rule to work, one important thing that must be remembered about the direction of current flow. Standard convention has current flowing from the positive terminal to the negative terminal. This convention is credited to Benjamin Franklin who theorized that electric current was due to a positive charge moving from the positive terminal to the negative terminal. However, it was later discovered that it is the movement of the negatively charged electron that is responsible for electrical current. Rather than changing several centuries of theory and equations, Franklin’s convention is still used today. ![]() | |
Magnetic Field Produced by a Coil
When a current carrying conductor is formed into a loop or several loops to form a coil, a magnetic field develops that flows through the center of the loop or coil along its longitudinal axis and circles back around the outside of the loop or coil. The magnetic field circling each loop of wire combines with the fields from the other loops to produce a concentrated field down the center of the coil. A loosely wound coil is illustrated below to show the interaction of the magnetic field. The magnetic field is essentially uniform down the length of the coil when it is wound tighter.

The strength of a coil’s magnetic field increases not only with increasing current but also with each loop that is added to the coil. A long, straight coil of wire is called a solenoid and can be used to generate a nearly uniform magnetic field similar to that of a bar magnet. The concentrated magnetic field inside a coil is very useful in magnetizing ferromagnetic materials for inspection using the magnetic particle testing method. Please be aware that the field outside the coil is weak and is not suitable for magnetizing ferromagnetic materials.